§7.1
空间直角坐标系
一、空间点的直角坐标
平面直角坐标系使我们建立了平面上的点与一对有序数组之间的一一对应关系,沟通了平面图形与数的研究。
为了沟通空间图形与数的研究, 我们用类似于平面解析几何的方法,通过引进空间直角坐标系来实现。
1、空间直角坐标系
过空间一定点,作三条互相垂直的数轴,它们以为原点,且一般具有相同的长度单位,这三条轴分别叫轴(横轴)、轴(纵轴)、轴(竖轴),
且统称为坐标轴。
通常把轴,轴配置在水平面上,而轴则是铅垂线,它们的正方向要符合右手规则:
右手握住轴,当右手的四个指头从轴的正向以角度转向轴正向时,大拇指的指向就是轴正向。
三条坐标轴就组成了一个空间直角坐标系, 点叫做坐标原点。
注明:为使空间直角坐标系画得更富于立体感,通常把轴与轴间的夹角画成左右。当然,它们的实际夹角还是。
2、坐标面
卦限
三条坐标轴中的任意两条可以确定一个平面,这样定出的三个平面统称为坐标面。
由轴与轴所决定的坐标面称为面,另外还有面与面。
三个坐标面把空间分成了八个部分,这八个部分称为卦限。
3、空间点的直角坐标系
取定空间直角坐标系之后,我们就可以建立起空间点与有序数组之间的对应关系。
设为空间的一已知点,过点分别作垂直于轴、轴、轴的三个平面,它们与轴、轴、轴的交点依次为,这三点在轴、轴、轴的坐标依次为,于是:空间点就唯一地确定了一个有序数组,这组数叫点的坐标。
依次称,,为点的横坐标、纵坐标和竖坐标,记为。
反过来,若已知一有序数组,我们可以在轴上取坐标为的点,在轴上取坐标为的点,在轴取坐标为的点,然后过、、分别作轴、轴、轴的垂直平面,这三个平面的交点就是以有序数组为坐标的空间点。
这样,通过空间直角坐标系,我们建立了空间点和有序数组之间的一一对应关系。
注明:
空间点的位置可以由空间直角坐标系中的三个坐标唯一确定, 因此, 常称我们生活的空间为三度空间或三维空间 ”。 事实上,我们的生活空间应该是四度空间,应加上时间变量。即:,它表示在时刻所处的空间位置是。
二、空间两点间的距离公式
设、为空间的两点,则两点间的距离为
证明:
过、各作三个分别垂直于三坐标轴的平面,这六个平面围成一个以为对角线的长方体,如图所示
是直角三角形, 故
是直角三角形, 故
从而
而
故
特别地,点与坐标原点的距离为